Image Processing -
In this post, we will cover the basics of working with images in Matplotlib, OpenCV and Keras.
import glob
from PIL import Image
import glob
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
# filepaths
fp_in_CFD = sorted(glob.glob("/home/imagda/sims-projs/CFD-DeepLearning-UNET/plots/valid_data/plots/montage_car_CFD_*.*"))
fp_in_ML = sorted(glob.glob("/home/imagda/sims-projs/CFD-DeepLearning-UNET/plots/valid_data/plots/montage_car_ML_*.*"))
counter = 0
for fp_img1, fp_img2 in zip(fp_in_CFD, fp_in_ML):
counter += 1
img1 = cv2.imread(fp_img1, -1)
img2 = cv2.imread(fp_img2, -1) # this one has transparency
img1_crop = img1[183:400, 169:1300]
img2_crop = img2[183:400, 169:1300]
numpy_vertical_concat = np.concatenate((img1_crop, img2_crop), axis=0)
#numpy_horizontal_concat = np.concatenate((img1_crop, img2_crop), axis=1)
filename = "/home/imagda/sims-projs/CFD-DeepLearning-UNET/plots/valid_data/plots/CFD+ML_"+"{:02d}".format(counter) +".png"
#file = open('{}{}'.format(name, x) , "w+")
plt.savefig(filename, dpi = 200)
plt.imshow( numpy_vertical_concat)
counter = 0
for fp_img1, fp_img2 in zip(fp_in_CFD, fp_in_ML):
counter += 1
img1 = cv2.imread(fp_img1, -1)
img2 = cv2.imread(fp_img2, -1) # this one has transparency
img1_crop = img1[183:400, 0:200]
img2_crop = img2[183:400, 800:1000]
#numpy_vertical_concat = np.concatenate((img1_crop, img2_crop), axis=0)
numpy_horizontal_concat = img1_crop + img2_crop
filename = "/home/imagda/sims-projs/CFD-DeepLearning-UNET/plots/valid_data/plots/CFD+ML_"+"{:02d}".format(counter) +".png"
#file = open('{}{}'.format(name, x) , "w+")
plt.savefig(filename, dpi = 200)
plt.imshow( numpy_horizontal_concat)
img1 = cv2.imread(fp_img1)
img1.shape
type(img1)
import cv2
from skimage import io
lion_rgb = cv2.imread('https://i.stack.imgur.com/R6X5p.jpg')
lion_gray = cv2.imread('https://i.stack.imgur.com/f27t5.png')
# Read Image1
#mountain = cv2.imread(fp_img1, 1)
# Read image2
#dog = cv2.imread(fp_img2, 1)
# Blending the images with 0.3 and 0.7
img = cv2.addWeighted(lion_rgb, 1, lion_rgb, 1, 0)
plt.imshow(img/266.)
#io.imshow(img)
# Show the image
#cv2.imshow('image', img)
# Wait for a key
#cv2.waitKey(0)
# Distroy all the window open
#cv2.distroyAllWindows()
rgb.shape
import numpy as np
from skimage import io
rgb = io.imread('https://i.stack.imgur.com/R6X5p.jpg')
gray = io.imread('https://i.stack.imgur.com/f27t5.png')
rows_rgb, cols_rgb, channels = rgb.shape
rows_gray, cols_gray = gray.shape
rows_comb = max(rows_rgb, rows_gray)
cols_comb = cols_rgb + cols_gray
comb = np.zeros(shape=(rows_comb, cols_comb, channels), dtype=np.uint8)
comb[:rows_rgb, :cols_rgb] = rgb
comb[:rows_gray, cols_rgb:] = gray[:, :, None]
io.imshow(comb)
rgb.shape